nbr2¶
Normalized Burn Ratio 2 (nbr2) highlights moisture and thermal contrasts using two
short‑wave infrared bands (SWIR1, SWIR2). It is complementary to the standard
Normalized Burn Ratio (nbr) and NDMI for post‑fire and moisture analysis.
Formula¶
Near‑zero denominators are guarded internally; results default to 0.0 for
values where |SWIR1 + SWIR2| < 1e-10.
Typical Interpretation (context dependent)¶
Higher positive values: areas with increased moisture / certain unburned conditions
Strong negative shifts (pre/post comparison): potential burn severity indicators
Always validate ranges against sensor calibration & atmospheric correction steps
Parameters¶
- nbr2(swir1, swir2)[source]¶
Normalized Burn Ratio 2 (NBR2)
NBR2 = (SWIR1 - SWIR2) / (SWIR1 + SWIR2)
- Parameters:
swir1 (
numpy.ndarray) – Short-wave infrared 1 band.swir2 (
numpy.ndarray) – Short-wave infrared 2 band.
- Returns:
NBR2 values (-1 .. 1).
- Return type:
Returns¶
A NumPy float64 array of the same shape as the input arrays (1D or 2D
“pixel grid”). For higher dimensional stacks, see the generalized
normalized_difference primitive; nbr2 is documented for the common 1D/2D use.
Notes¶
Inputs may be any numeric dtype; internally coerced to
float64for stable arithmetic.Shapes must match exactly; otherwise a
ValueErroris raised.For time‑series or multi‑band cubes (3D/4D), call
normalized_difference(swir1, swir2)directly if you need broader dimensional dispatch.Use
delta_nbrfor change detection between pre/post epochs: it computes \(\mathrm{NBR}_{pre} - \mathrm{NBR}_{post}\).
Examples¶
1D arrays:
import numpy as np
from eo_processor import nbr2
swir1 = np.array([0.40, 0.55, 0.47])
swir2 = np.array([0.30, 0.25, 0.22])
out = nbr2(swir1, swir2)
# (swir1 - swir2) / (swir1 + swir2)
print(out)
2D arrays:
swir1 = np.array([[0.40, 0.50],
[0.45, 0.55]])
swir2 = np.array([[0.30, 0.28],
[0.20, 0.15]])
out = nbr2(swir1, swir2)
print(out.shape) # (2, 2)
Cross‑Reference¶
delta_nbr (change detection)
nbr (standard burn ratio)
normalized_difference (generic building block)